Proof of the Contraction Properties of PDHG

Posted by Wanyu Zhang on March 4, 2025

In this blog, we introduce how to simply derive the nonexpansiveness and contraction properties of primal-dual hybrid gradient method (PDHG) iteration through the language of operator theory.

In [1], Lu and Yang introduced a unified iteration form of the proximal point method, PDHG, and ADMM:

\[P (z - z_A) \in \mathcal{F} (z_A)\]

$z_A$ is the next iteration, $\mathcal{F}$ is a subdifferential operator, $P$ is a positive semi-definite iteration matrix and varies between different algorithms.

Assumptions

1. Motononicity Consider the property of $\mathcal{F}$. When $F$ is convex, $\mathcal{F}$ is maximal monotone, which implies that

\[\langle z_1 - z_2, f_1 - f_2 \rangle \geq 0, \quad f_1 \in \mathcal{F} (z_1), f_2 \in \mathcal{F} (z_2)\]

Apply this property on point $z_A$ and $z_{\star}$, then

\[\langle P (z - z_A) - P (z_{\star} - z_{\star}), (z_A - z_{\star}) \rangle \geq 0\]

simplify it,

\[\langle z - z_A, z_A - z_{\star} \rangle_P \geq 0 \quad (1)\]

2. Sharpness [2] has shown a definition of sharpness condition:

\[\alpha^2 \| z - z_{\star} \|^2_P \leq \| z - z_A \|^2_P \quad (2)\]

Proof

Nonexpansiveness

First we prove monotonicity of distance to optimality using (1).

\[{\color{red}{\| z - z_{\star} \|_P^2}} = \| z - z_A \|_P^2 + \| z_A - z_{\star} \|_P^2 + 2 \langle z - z_A, z_A - z_{\star} \rangle_P {\color{red}{\geq \| z_A - z_{\star} \|_P^2}}\]

Contraction

Then we prove contraction using (1) and (2). Let

\[\rho = \frac{\| z_A - z_{\star} \|^2_P}{\| z - z_{\star} \|^2_P}\]

WLOG, fix $| z - z_{\star} |^2_P = 1$.

\[\| z - z_A \|_P^2 + \| z_A - z_{\star} \|_P^2 \leq {\| z - z_{\star} \|_P^2} \leq \frac{1}{\alpha^2} \| z - z_A \|^2_P \quad \Rightarrow \quad \frac{\alpha^2}{1 - \alpha^2} \| z_A - z_{\star} \|_P^2 \leq \| z - z_A \|^2_P\] \[\frac{\alpha^2}{1 - \alpha^2} \| z_A - z_{\star} \|_P^2 + \| z_A - z_{\star} \|_P^2 \leq \| z - z_A \|^2_P + \| z_A - z_{\star} \|_P^2 \leq \| z - z_{\star} \|^2_P = 1\]

Finally,

\[{\color{red}{\rho}} = \| z_A - z_{\star} \|_P^2 {\color{red}{\leq 1 - \alpha^2}}\]

References

[1] Lu, Haihao, and Jinwen Yang. ‘‘On a unified and simplified proof for the ergodic convergence rates of ppm, pdhg and admm.arXiv preprint arXiv:2305.02165(2023).

[2] Lu, Haihao, and Jinwen Yang. ‘‘Restarted Halpern PDHG for linear programming.”arXiv preprint arXiv:2407.16144(2024).